wiki より 「時計遺伝子」「時間生物学」

コピペ

 

時計遺伝子 clock gene 概日リズム(体内時計)をつかさどる遺伝子群を指す

動物では period (per), Clock (Clk), cryptochrome (cry) などが知られ

時計遺伝子に変異が起こると、モデル生物では恒常条件下(恒常的な暗黒や連続照明)概日リズムが保てず、活動にリズムがなくなったり(無周期)、短い、あるいは長い周期(短周期、長周期)で行動するようになる。

 

時計遺伝子(Clock gene)とは

概日リズムの発生に必要な遺伝子の一群を指す が 正式に定義されたものではない

 

概日リズム circadian rhythmサーカディアン・リズム

約24時間周期で変動する生理現象で、動物植物菌類藻類などほとんどの生物に存在し

一般的に体内時計とも言う

概日リズムは内在的に形成されるものであるが 光や温度 食事など外界からの刺激によって修正される

動物では24時間の明暗の周期に従っており、完全な暗闇の中に置かれた場合には、24時間に同調しない周期となる。これをフリーランと呼ぶ。こうした非同調した周期は明暗などの刺激によりリセットされる。脳の視交叉上核が、体内のそうした周期に影響を与えているとみなされている。周期的でない周期におかれることによる概日リズムの乱れは、不快感のある時差ボケを単純に起こしたり、概日リズム睡眠障害となる場合がある。

 

時間生物学

日 週 季節 年などの単位で経時的に変化する生物のリズムを研究する学問

 

歴史

内在的な概日リズムは、1729年にフランスの科学者ジャン゠ジャック・ドルトゥス・ドゥ・メランによって初めて科学論文として報告された。彼は植物のオジギソウの葉が、外界からの刺激がない状態でも約24時間周期のパターンで動き続けることに気づいた(就眠運動)(ハワード・ヒューズ医療研究所「仮想博物館」)。

語源

英語の circadian rhythm は、ラテン語の「約、おおむね」を意味する circa と、「日」を意味する dies から名付けられた。つまり「おおむね1日」の意味である。

定義

概日リズムは、次の3つの基準で定義できる。

  1. そのリズムが恒常的な状態(例えば恒暗状態)でも約24時間の周期を持続する。
  2. そのリズムの周期が光パルスや暗パルスによってリセットされる。
  3. そのリズムが温度補償性を持っている、つまり一定範囲内の温度において周期が変わらない。

起源

概日リズムは進化上最も古い細胞に起源を持ち、昼間の有害な紫外線下でのDNA複製を回避するために獲得した機能であると考えられている。結果として複製は夜間に行われることとなった。現存するアカパンカビ (Neurospora) は、このような時計制御された複製機構を保持している。

現在知られている中で最も単純な概日リズムを持っている生物は、真正細菌シアノバクテリア (cyanobacteria) である。最近の研究では、シアノバクテリア (Synechococcus elongatus) の概日リズムは、核となるたった3つのタンパク質を試験管の中に入れるだけで再構築できることが実証された。この時計はATPを補給すれば、22時間のリズムを何日間も持続することができる。以前の学説では概日リズムはDNAの転写翻訳フィードバックループ機構に基づいているとされていたが、この真正細菌の研究によって必ずしもそうではないことが示された。しかし、この説は真核生物においては、まだその通りであると考えられている。真正細菌と真核生物の概日リズムは同様の基本構造(入力 - 中心の振動体 - 出力)を持っているが、これらを構成するタンパク質に相同性は全くない。このことは、おそらくそれぞれが独立した起源を持っていることを示している。

動物の概日リズム

概日リズムは人を含む動物において、睡眠摂食のパターンを決定する点において重要である。脳波ホルモン分泌、細胞の再生、その他の多くの生命活動には明確な概日リズムが存在している。1970年にArthur T. Winfree(米国)がショウジョウバエで「シンギュラリティ現象」(強い光で概日リズムが一時的に狂う現象)を確認して以降、多種の生物で概日リズムの狂いが観察されている。身近な現象に当てはめると、夜更かしによる不眠や航空機による移動により生じる時差ぼけの緩和に「強い光が有効」であることは広く知られているが、この発生メカニズムを細胞レベルの実証実験で証明した。

明暗サイクルの影響

概日リズムは明暗の周期に関係している。動物は完全な暗闇の中で長期間飼育されると、フリーラン・リズム (free-running rhythm) に従って行動する。このような状態にある動物の睡眠サイクルは日々、前進あるいは後退する(内在的な周期が24時間より短い場合は前進、長い場合は後退する)。毎日リズムをリセットする、環境からの刺激をZeitgebersという。興味深いことに、完全に盲目の地下に住む動物(例えばblind mole rat Spalax sp.)も外界の刺激なしに内在的な時計を維持することができる。

外界からの刺激を絶たれた環境下で生活している人は、しっかりとした睡眠・覚醒リズムを示すが、この睡眠・覚醒リズムは体温や血中メラトニン量のリズムとずれた状態になることがある。このような体内リズムの乱れは規則正しい明暗サイクルを与えることで解消される。この研究は、宇宙船の中の環境設計に影響を与えた。宇宙船の中に明暗サイクルを模擬した環境を作ることで宇宙飛行士の健康を維持するのである。

視交叉上核

哺乳類における時計中枢視床下部視交叉上核 (suprachiasmatic nucleus; SCN) に存在する。視交叉上核を破壊された動物では、規則正しい睡眠・覚醒リズムが完全になくなってしまう。視交叉上核は光の情報をから受け取る。目の網膜において光を感受できる細胞は、古くから知られている視細胞桿体細胞錐体細胞のみではなく、網膜神経節細胞 (retinal ganglion cell) の一部にも存在する。これらの細胞はメラノプシン (melanopsin) と呼ばれる感光色素を含んでおり、網膜視床下部路を通って視交叉上核に達する。視交叉上核の細胞は、体内から取り出され外界からの刺激がない状態で培養されても、独自のリズムを何年間も刻み続けることができる。

視交叉上核は日長の情報を網膜から受け取り、他の情報と統合し、松果体 (pineal gland) へ送信していると考えられている。松果体ではこの情報に応答してホルモンであるメラトニン (melatonin) を分泌する。メラトニン分泌は夜間に高く昼間に低い。

視交叉上核以外の時計中枢

近年、体のいくつかの細胞が時計中枢である視交叉上核の支配下にないことを示す証拠が現れてきた。例えば、肝臓の細胞は光より摂食に応答するようである。また、食餌性の概日リズムの形成には視床下部の背内側核が関与しているといわれている。

1997年には時計遺伝子が発見された。全身の細胞はそれぞれ、時計遺伝子の転写翻訳フィードバックグループで形成される「細胞時計」による独自の生体リズムを持っている。これらの同調・微調整に視交叉上核が関わっている。

細胞時計を司る遺伝子には、陽性制御のClockBmal1など、陰性制御のPer遺伝子群・Cry遺伝子群などがある。

 

toka toka.................

 

コカインとの関連

視交叉上核以外の脳の部位の概日リズムと時計遺伝子は、コカインなどの薬物の作用に影響する可能性もある。時計遺伝子を操作することでコカインの作用が変化するといわれる。

光と生体時計

光が生体時計を調節する能力は位相反応曲線に依存する。睡眠・覚醒リズムの位相によって、光は生体時計を前進させたり後退させたりする。必要な光の強さは種によって異なり、例えば夜行性げっ歯類の時計は昼行性ヒトより弱い光で調節される。

光の強さに加え光の波長)も、時計を調節する能力を決める重要な因子である。光受容蛋白質であるメラノプシンは青色光(420 - 440nm)で最も効率よく励起される。